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RECOMBINATION OF HYDROGEN-AIR COMBUSTION PRODUCTS

IN AN EXHAUST NOZZLE

By Erwin A. Lezberg and Richard B. Lancashire

SUMMARY

Thrust losses due to the inability of dissociated combustion gsses

to recombine in exhaust nozzles are of primary interest for evaluating

the performance of hypersonic ramjets. Some results for the expansion

of hydrogen-air combustion products are described. Combustion air was

preheated up to 3300 ° R to simulate high-Mach-n_mber flight conditions.

Static-temperature measurements using the line reversal method and wall

static pressures were used to indicate the state of the gas during

expansion.

Results indicated substantial departure from the shifting equilib-

rium curve beginning slightly downstream of the nozzle throat at stagna-

tion pressures of 1.7 and 3.6 atmospheres. The results are compared with

an approximate method for determining a freezing point using an overall

rate equation for the oxidation of hydrogen.

INTR ODUCT I ON

The high combustion temperatures encountered in jet engines for

high-Mach-n_er flight lead to extensive dissociation of the combustion

products. Since residence time in the exhaust nozzle is short_ the com-

bustion products - because of necessarily finite reaction rates - cannot

follow the shifting equilibrium during expansion. If these recombination

rates are slow_ large thrust losses can occur. These losses are shown

for a stoichiometric hydrogen-air system in figure i for the limiting

cases of frozen and equilibrium expansions (ref. i). The losses can be

appreciably greater for hydrocarbons or systems involving condensable

exhaust products.

A number of mathematical solutions have been recently applied to

the expansion through a nozzle with reaction (refs. 2 to 6). These are

essentially stepwise integral methods and thus far have involved only a

single reaction. For fast computers_ no limitations are seen to exist



for extending the methods to simultaneous reaction rates. The difficulty
in applying these solutions is the present la_k of knowledge of reaction
rates_ and relaxation rates in general_ at the conditions of interest.
Reaction-rate data obtained by measurementof concentration gradients in
flat flames (refs. 7 to IZ) and in shock tubes (e.g., ref. 13) maybe
applicable to the nozzle problem. The solutions must be checked, how-
ever, against actual measurementsin a nozzle before any confidence can
be established. The assumption that rates determined at conditions far
removedfrom equilibrium can be applied to conditions near equilibrium
leaves somedoubts, since perturbations from a Maxwellian distribution
may occur during radical recombination reactions (ref. 14).

Only a few experiments have been conducled to study recombination
in a nozzle. In one of these experiments_ where inlet conditions could
be varied to produce flows varying from near-equilibrium to near-frozen
flow, measurementswere madefor the recombiration 2NO2 _ N204 (ref. 6).
These showedgood agreementwith a complete solution of the flow.

The present work describes measurementsof static pressures and
temperatures for the hydrogen-air system in a convergent-divergent ex-
haust nozzle and is an extension of previous work described in reference
15. The operating conditions are designed t( approximate ramjet flight
at a Machnumberof 6 at an altitude of about i00,000 feet. Fuel-air
ratios up to I._ times stoichiometric were studied. The nozzle is coni-
cal with an exit-to-throat area ratio of 9.5:1 and a throat diameter of
5.08 inches.

The calibration procedure used for the _ine reversal pyrometer is

described by Donald R. Buchele in appendix B_ entitled "Calibration of

Pyrometer with Arc Source."

!

TEST FACILITY

Air from the laboratory system was metered through a standard ASME

orifice_ heated_ and passed through the test section, where fuel was in-

troduced, burned, and the combustion products expanded through a super-

sonic nozzle. The flow was then cooled and cucted to the laboratory

exhaust system. The facility is shown schem_tically in figure 2.

The storage-type heat exchanger (ref. i_) used to preheat the air

consisted of a packed bed, A feet in diamete_ and 10.4 feet deep_ insu-

lated with refractory and insulating brick. The bed was packed with

al_umina balls 3/8 inch in diameter. It was _ eated by burning gasoline

and air and passing the combustion products (_own through the bed. The

bed was banked continuously at 1200 ° to 1500 c_F when not used for test-

ing. During a test_ the bed was heated to the desired operating temper-

ature, after which the airflow through the b_d was reversed. The heater

will supply air at 3.6 atmospheres at a temperature up to 3300 ° R for

periods _ to 30 minutes.
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The combustor and hydrogen-fuel injector (fig. 3) were both water-

cooled. The injector was machined from a solid copper plate and had a

blockage of 33 percent. Fuel was injected through 148 holes of 0.040-

inch diameter facing downstream and drilled at 4S ° to the airflow direc-

tion. Fuel was taken from a bank of high-pressure cylinders_ reduced in

pressure to about 150 pounds per square inch gage, and metered through a

standard ASME orifice. Flow was controlled by throttling downstream of

the metering orifice.

The water-cooled nozzle had conical convergent and divergent sec-

tions joined by a circular arc at the throat and an exit-to-throat area

ratio of 9.5:1. The contour and instrument locations are shown in fig-
ure 4.

Instrumentation

Static-pressure taps were drilled normal to the nozzle wall and were

located spirally around the axis. Pressure taps were also located at the

combustor inlet, outlet, and at the nozzle base. The pressures were read

with the laboratory digital multiple-pressure recorder (ref. 17). Dif-

ferential pressures at the metering orifices were read directly for air

and through a mechanical pressure transmitter for the fuel. Water-orifice

differential pressures and the fuel upstream-orifice pressure were meas-

ured with transducers. After each change in fuel flow, the flow was al-

lowed to reach steady-state conditions before any data were taken by

monitoring the nozzle stati_p_ssmres on a mercury manometer board.

Temperatures of the cooling water_ nozzle wails, air_ and fuel at

the metering orifices were measured with iron-constantan thermocouples.

Air temperature at the combustor inlet was measured with a platinum -

platinum-13_ rhodium cooled aspirated thermocouple probe. Two types were

used during the course of this investigation: The first had a sonic noz-

zle insert (ref. 18)_ and the second, which was a stagnation cup with

bleed holes for the aspirated gas, proved to have a longer lifetime in

the high-temperature gas stream since the junction was not exposed to a

high-velocity stream. Radiation and conduction errors were negligible

for both probes. A recovery correction of 1.5 percent was applied to the

sonic aspirated probe. All thermocouple outputs were read with a digital

voltmeter in conjunction with the laboratQry central data system (ref.

17). The inlet air temperature was also recorded on a strip-chart re-

corder.

Line reversal pyrometer. - The steady-state nozzle static tempera-

tures at the port positions shown in figure 4 and the combustor-exit

temperature profiles were measured with a self-balancing line reversal

pyrometer (refs. 19 and 20) with a carbon-arc comparison source. Varia-

tion of the source intensity was accomplished by rotation of an optical
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wedge in the light path. The optical diagr_n for the instrument is
shown in figure 5. The calibration procedur_ is given in appendix B.
Both the D lines of sodium centered at 5893 _%and the blue cesium line
at 45S3_ were used for the reversal temperature measurements. The
brightness temperature of the arc is higher :_t the lower wavelength and
extended the range of the instr_nent to a hi!_her temperature. Measure-

ments coald then be extended to the nozzle-i_let position. Sodium car-

bonate or cesium sulfate was introduced into the test section as a powder

in a carrier gas stream through a water-cool_d probe. The probe was

mounted in an actuator at the combustor exit and could be traversed radi-

ally. The powder could thus be localized to a cross-sectional area of

about 5/4-inch diameter at the nozzle inlet so that temperature profiles

could be determined. The cesium sulfate used was somewhat hygroscopic

(probably because of carbonate impurities)_ so that care was required in

preventing moisture from entering the powder feeder (ref. 20). The pow-

der was dried before use_ and i percent of Celite was added. Cylinder

nitrogen was passed through a dessicant cartridge and used as the carrier

gas for the powder. Air was used with the sodium carbonate. The nozzle

ports were closed with contoured plugs except at the station where the

optical unit was mounted. Lenses at the nozzle ports were used to reduce

the field of view.

_O

Gas Sampling

Combustion-gas samples were withdrawn eta distance i5 inches down-

stream of the fuel injector and at various ladial locations through a

O.020-inch-diameter water-cooled probe. A _ressure ratio sufficient to

obtain critical flow was maintained across the probe_ and the samples
were collected in iS-milliliter bottles.

Analysis for hydrogen_ nitrogen, and o_ygen was performed with a

Perkin-Elmer gas chromatograph using argon _s the carrier gas. The con-

centrations were determined by comparing pe_k heights with known samples.

Performance Calculatf ons

Equilibrium flow. - The thermodynamic _tate following constant-

pressure combustion or isentropic expansion of air to an assigned pres-

sure was determined by a set of equations d(_fining the equilibrium_ con-

servation of massj conservation of energy, ],artial pressures, and entropy.

The successive approximation method was the same as that of reference 21.

The thermodynamic data were taken from refe:'ences 21 and 22. The calcu-

lations were programed for the UNIVAC 1103 (_omputer.



The temperature and composition following the combustion process are
found for the measured initial conditions of air and fuel temperature_
pressure_ fuel-air ratio_ and heat loss to the fueff-injector cooling
water. The entropy following the isentropic expansion must be equal to
the entropy before the expansion:

A o
i

i

i
(i)

(All symbols are defined in appendix A.) If A is taken as the number

of formula weights divided by the static pressure_

Pi = ni (Z)

Equation (i) can then be written in terms of partial pressures alone.

The solution is found by successive adjustment of the temperatures and

partial pressures to satisfy equation (i) for an assigned static pressure

lower than the initial pressure. The velocity at any point is determined

from the energy equation_

q2gJ(ho-hk) (s)

where ho is taken at the nozzle inlet. The nozzle area at any step of

the expansion is determined from the continuity equation

A__k= RT (4)

The throat area is determined by choosing the minimum from a pressure-

area plot or simply as the minimum area determined from the stepwise cal-

culation_ using an initially small pressure step size.

Frozen flow. - The composition is assumed frozen at the nozzle inlet

following equilibrium constant-pressure combustion. The partial pressures

at the kth step of the expansion are

Pk

(Pi)k-- Po (Pi)o (5)



and the total entropy per equivalent formula weight of reactant is

Pk
Sk : So - R in-- (6)

Po

where So is given by equation (i). The temperature is determined by

satisfying (i) for temperature_ where the n_'s are the initial values

following combustion.

Partially frozen flow. The equilibrium calculations are followed

to the step corresponding to the assumed freezing point. The composition

is then assumed fixed_ and the calculation is resumed as in the case of

frozen flow but using the values of mole fraction at the freezing point

as initial conditions. The initial enthalpy in equation (3) must con-

tinue to be the value at the combustor.

!
H
tO
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RESULTS AND DISCUSSI(N

Nozzle Calibration

A cold-flow static-pressure calibration of the nozzle was made to

determine the equivalent area ratio of the n(zzle for the one-dimensional

expansion of an ideal gas with y = 1.4. Dr5 air was used during the

test. The boundary-layer displacement thickress was computed by the

method of reference 23_ described in appendi> C. Calculated displacement

thicknesses for cold air_ hot air_ and stoic_iometric combustion products

are shown in figure 6. The equivalent area _atios from the cold-flow
calibration and the area ratios corrected for the cold-air boundary-layer

displacement thickness are shown in figure 7, The symbols show the area

ratios at the static tap locations representing source flow and are the

ratio of the spherical cap area to the sonic flow area. The sonic flow

area was computed from the measured cold-air mass flow_ total pressure_

and temperature. Using this value for the t_roat area_ the comparison

to the calibration data corrected for boundary layer is quite good.

Air-temperature measurements. - Radial _,ir-temperature profiles were

measured at the combustor outlet with the lil.e reversal method using the

tungsten lamp source and sodium tracer. The temperature was found to be
flat within 120 ° F to i inch from the wall al about 3200 ° R. The average

temperature was within 30 ° F of the thermoco_@le measurement. A fluctua-

tion at a frequency of 3 to 4 cycles per sec(_nd in the air-temperature

measurements was sensed by the aspirating th_rmocouple. The magnitude of

the fluctuation was of the order of ±i00 ° F iLear the wall but was consid-

erably reduced near the center of the duct. The magnitude of the fluc-

tuations was also considerably reduced at th_ lower inlet pressure of 1.7

atmospheres.



_D

Cq

I

gq

Expansion of heated air. - A static-pressure profile for air at

3300 ° R is shown in figure 8_ together with the calculated equilibrium

and frozen vibration profiles. The inlet temperature has been corrected

for the cooling loss to the fuel injector. The equilibrium and frozen

pressure ratios are evaluated at the equivalent one-dimensional area

ratios. The area ratios at the pressure tap locations have been cor-

rected for the change in boundary-layer displacement thickness from the

cold-flow to heated-air conditions. The dotted line is plotted through

the data by using the method of least squares and has a standard devia-

tion about this line of 0.46 percent. It appears to indicate a lag in

relaxation of vibrational energy. A discontinuity in the profile at an

area ratio of 2.1 was typical of all the data including the calibration

and was possibly due to a discontinuity in the nozzle contour.

Combustion-gas samples. - A comparison of the measured and calcu-

lated equilibrium composition of the samples plotted against sample

equivalence ratio is shown in figure 9 and is presented in table I.

Analysis was on a dry basis for hydrogen_ nitrogen_ and oxygen. Argon

was used as the carrier gas and thus does not show up in the analysis,

but was computed as 1.21 percent of the nitrogen present in the sample.

Nitric oxide was assumed to be oxidized in the sample to NO 2 and to

be absorbed in the water present as the acids. It would presumably be

lost by absorption in the desiccant used for drying the samples or as

liquid remaining in the sample bottles. Corrections to the sample com-

position for NO were made on the basis of the mole fraction present at

equilibrium and the oxygen in the sample corrected for oxidation of NO

to NO 2 •

The water vapor formed during combustion was computed as

hE2o = 2 (7)

where the initial number of moles of oxygen is given as

n 1 q) (8)_ i + _ nNOen02_ o 3.76 N2_s

and the final number of moles as

i

= + _ nN0eq (9)n02 n02_ s

The equilibrium compositions were computed from the data of references

21 and 22 at the same pressure, overall equivalence ratio_ and combustion

temperature as the sample. If the hydroxyl radical is assumed to recom-

bine to form water_ the compositions are in fairly good agreement and
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indicate that there are no large deviations from equilibrium at the noz-
zle inlet.

The compositions are also given in table I at various radial sampling
positions. It was not possible to hold conditions constant during a ra-
dial survey because of the time involved in s_mpling and changing sample
bottles; however_ there are no pronounced discrepancies between the over-
all and sample equivalence ratios at any radi_ position.

Combustor temperature profiles. - Radial temperature profiles at the

combustor exit are shown in figure i0. These measurements were made by

reversal of the 4553 _ line of cesium while irjecting cesium sulfate pow-

der through a traversing probe. Superimposed on figure 10(a) is a sketch

of the fuel injector showing its position relative to the powder-injecting

probe. The asymmetry of the profile may be caused by a few plugged ori-

fices and presumably would be averaged-out over other angular positions.

Since the injector orifices were sized for critical flow at stoichiometric

fuel flow at 3.6 atmospheres burner pressure_ the distribution and mixing

would be expected to be poorer at low fuel flcws. This is evident from

the profile shown for an equivalence ratio of 0.644 at 1.9 atmospheres

in figure lO(b). The theoretical combustion lemperature considering only

cooling loss to the fuel injector is noted on each profile and compares

quite well with the measured temperature near the center of the duct for

equivalence ratios near stoichiometric. The _heoretical combustion tem-

perature corrected for cooling loss to the con_bustor wall has been com-

pared with the area-weighted average from the profiles and also agrees

reasonably well for all the profiles. It app_ars_ thenj that the shape

of the profiles for near-stoichiometric mixtures is due principally to

heat transfer to the walls.

I

C_

Expansion of Hydrogen-Air Combusl ion Products

Static-temperature measurement. - Sodium D-line reversal temperature

measurements at an area ratio of 1.23 for pressures of 3.6 and 1.7 atmos-

pheres and air temperatures from 2880 ° to 318S ° R are plotted in figure

ii as a function of equivalence ratio. The cslculated equilibrium and

frozen static temperatures are shown for compsrison. The temperatures

essentially follow the equilibrium curve at the higher pressure and show

some departure from the equilibrium line at the lower pressure for close-

to-stoichiometric mixtures. For lean mixtures the higher-than-equilibrium

temperatures can be attributed to weighting by the reversal instrument.

Since temperature zones higher than the calculated mean combustion tem-

peratures exist because of poor fuel distribution and mixing_ spreading

of the injected tracer or sodium salts contaminating the air stream will

tend to weight the indicated reversal strongly toward the high-temperature

peaks. Another cause of this weighting is th_ effect of the air-

temperature fluctuations noted earlier. Chan_es in mass flow to choke
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the nozzle accompanying the air-temperature fluctuations produce changes

in fuel-air ratio. This either accentuates or diminishes the combustion-

temperature changes_ depending on whether the mixture is leaner or richer

than stoichiometric. The earlier results of this work reported in refer-

ence 14 were more subject to error from this source_ since the frequency

response of the _nstr_ent used was limited by a 0.5-second lag of the

tungsten filament. The frequency response of the modified reversal in-

strument was limited to about 4 cycles per second by the servomotor that

drives the optical wedge. This_ however_ was fast enough to respond to

the changes just noted_ so that averaging over the recorder fluctuations

yielded the correct average temperature. Further errors at lean mixtures

may be due to small-scale inhomogeneities in mixing that could not be re-

solved because of the limiting time response or the spreading of the so-
dium tracer stream.

Figure 12 shows the measured reversal temperatures at an area ratio

of 1.77. Here_ the deviation from the equilibrium curve is quite pro-

nounced for near-stoichiometric mixtures. The data at the lower pressure

of 1.7 atmospheres indicate somewhat greater departure. The weighting

toward high temperatures at lean equivalence ratios is also apparent at
this location.

The static temperatures are plotted in figure 13 as a function of

area ratio at an equivalence ratio of i. The area ratios for the data

points were negligibly affected by the boundary-layer corrections and

are taken from the cold-flow calibration at the axis of the optical path.

Static temperatures at the last measuring station_ where A/A* = 5.14_

could not be measured because they were below the range of the instrument

(29SS ° R). The departure from the equilibrium curve occurs between the

first and second measuring stations at 3.6 atmospheres_ and somewhat be-

fore the first measuring station at 1.7 atmospheres.

Pressure measurements. - Static-pressure profiles for hydrogen-air

combustion products are shown in figure 14(a) at an equivalence ratio of

1.04_ combustion temperature of 5230 ° R_ and a total pressure of 3.6 at-

mospheres. The area ratios at the static tap locations have been cor-

rected for change in boundary-layer displacement thickness for a frozen

boundary layer at an equivalence ratio of about 1.0. A curve has been

fitted to the data by the method of least squares. The data have a

standard deviation about this curve of 0.42 percent and indicate depar-

ture from the equilibrium line slightly downstream of the throat.

The pressure ratios at the last static tap location are shown plotted

in figure 14(b) as a function of equivalence ratio. The frozen line has

been corrected for boundary-layer losses and appears as the dashed line.

The boundary layer was computed at equivalence ratios of 1.0_ 0.6_ and

for heated air alone; and the correction was interpolated for intermediate

values. Since the boundary-layer corrections depend very strongly on the
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ratio of wall to free-stream enthalpies_ the (orrections would be sensi-
tive to nonuniform free-stream properties, k, lean equivalence ratios_

where the profiles indicated higher temperatu:'es nearer the walls due to

uneven fuel distribution through the injector, the free-stream to wall

temperature ratios higher than theoretical wo1_d result in a smaller dis-

placement thickness; and hence the actual cor_'ection to the area ratio

should be larger. The data would then follow the corrected frozen line

fairly closely over the complete equivalence :'atio range.

Calculation of the apparent freezing poiILt. - Recent work at this

laboratory (ref. 12) on gas sampling downstre_ of lean, flat_ hydrogen-

air flames has yielded a rate equation for an overall reaction:

i
_2 + _ o2 _ _2 °

kD

(io)

A rate equation for the decay of hydrogen dow_istream of a flat flame was

found to be best described by

8100

d[H2] - l. TXlO10[H213/2[02 e- R---_ (ll)
dt

This expression probably represents a lower llmit, since diffusion was

neglected in fitting the data. Since the con_entrations of hydrogen

downstream of these flames are in large exces_ of equilibrium_ the rate

equation is essentially a recombination rate _nd may be used to satisfy

the Bray criterion (ref. 3) for a freezing point. The Bray freezing

point is defined for the dissociation and thr,_e-body recombination of a

diatomic molecule_ where the net rate of reaction at equilibrimm is ap-

proximately equal to the rate of dissociation Since rD _ rR, where

departures from equilibrium begin to occur_ tile Bray criterion for the

freezing point may be written as

_ KrR (12)
dt

where K is about unity.

as

At equilibrium_ the net rate of change o _ any species may be written

d[
d[ ]i- d[ ]i,eq _ (13)

dt dt dt

#

O_
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where the concentrations are given by

(15)
[ ]i : xij

Equation (13) states that the net rate due to reaction alone equals the

total rate minus the change in partial molar density due to the expan-

sion. The concentration due to density change will be

[ ] f(p)_.×i,o
Jo (is)

The density is taken from the equilibrium flow calculations_ since the

reaction will affect the flow appreciably. A graphical solution of

equations (ii) and (iS) should give the freezing point. If the overall

reaction given by equation (i0) is considered_ the net rate of change of

[H20] is determined from the equilibrium calculation as

d[H O]
dt d {[H20] eq [H20] of(iD)}-u-_ (t6)

Equations (ii) and (16) are plotted in figure 15 against distance for

stoichiometric mixtures at 3.6 and 1.7 atmospheres. A freezing point is

indicated at an area ratio of 1.02 downstream of the throat at 3.6 atmos-

pheres and at an area ratio of 1.07 upstream of the throat for a pressure

of 1.7 atmospheres. At stagnation pressures of 3.6 and 1.7 atmospheres_

freezing points were assumed at intervals in the vicinity of the throat_
and the flow was calculated with frozen concentration assumed downstream

of the point. The best fit of these calculations to the data was a

freezing point at an area ratio of i.i for the higher pressure_ and at

an area ratio of 1.0S for the lower pressure. The computed temperatures

are shown as dashed lines in figure 13. The computed pressures are

shown by the square symbols in figure 14(a). Relating these apparent

freezing points back to the rate equation (ii) yields a rate constant of

8.3×i0 I0 for the higher pressure and 6.4><1010 for the lower pressure.

In view of the uncertainty in determining the rate equation in the work

on flat flames_ and in extrapolating it to the nozzle flow conditions_

the agreement is probably better than should be expected. The pressure

data (fig. 14(a)) show good agreement with the calculations based on

Bray's approximation. For a more adequate comparison with the data, how-

ever_ an exact calculation of the flow with reaction is needed.
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SUMMARYOFRESULTS

Departures from chemical equilibrium have been observed for the ex-
pansion of near-stoichiometric hydrogen-air conbustion products through
a convergent-divergent exhaust nozzle.

i. Static-temperature measurementsshow a nonequilibrium condition
near the throat followed by a rapid decrease i_ temperature toward the
frozen composition line. These measurementsat 3.6 and 1.7 atmospheres
indicated a greater degree of recombination at the higher total pressure.

2. Wall static-pressure measurementsalso indicate a nonequilibrium
condition slightly downstreamof the throat for a total pressure of 3.6
atmospheres] it was shownthat the data approximated an expansion corre-
sponding to one in which the composition had frozen at an area ratio of
i.i downstreamof the throat.

3. The application of an approximate freezing criterion to an over-
all reaction rate for the oxidation of hydroge_ and air predicts freezing
of the composition in the vicinity of the nozzle throat.

!

tO

O_

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, June 13, 1961
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APPENDIXA

cO

OG

I

A

a

CI, C2

f

g

H

Hi

Hi, fp

h

J

K

k

M

.1

N_

n

Pr

2o

Pi

R

r

SYMBOLS

cross-sectional area of nozzle, number of equivalent formula

weights

velocity of sound

Planck's radiation constants

function

gravitational constant

form factor, 8*/0

incompressible form factor

flat-plate incompressible form factor = 1.3

entha!py per unit mass

mechanical equivalent of heat

constant in eq. (12)

reaction-rate constant

Mach number

mean molecular weight

monochromatic areal intensity

number of moles

Prandtl number

static pressure

partial pressure of the ith species

universal gas constant

reaction rate
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S

T

T

t

U

X

X

Y

8_

E

9

V

0

'17

cp

entropy per mole

temperature

average temperature

time

velocity

mass-flow rate

mole fraction

axial distance from nozzle inlet

distance normal to axis of nozzle

fraction dissociated

ratio of specific heats

displacement thickness

emissivity

momentum thickness

wavelength

kinematic viscosity

density

optical transmission factor

equivalence ratio

Sub script s:

C

D

e

eq

cooled

dissociation

free stream

equilibrium

!

_0

O_
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IM

g

i

k

0

R

ref

S

T

tr

W

combustion gas

ith species

kth step in expansion

stagnation state, initial conditions

re comb inat ion

reference

sample

temperature

transformed quantity

wall

Superscripts:

0 standard state

* conditions at sonic throat

15
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APPENDIXB

CALIBRATIONOFPYROMETERWITHARCSOURCE

By Donald Buchele

The illumination system of the pyrometer with a carbon arc source
is shownin figure S. The tungsten lamp source of reference 19 has been
replaced by a pair of circular absorption wed,_es_which are illuminated
by a carbon arc image focused on them by a co_densing lens. The logarithm
of the wedgetransmission factor varies from ,) to 3 and is linear with
the angle of rotation. Wedgeposition is tra:ismitted by a potentiometer.
Self-balancing operation is obtained by rotation of one of the wedges.
The other wedge is stationary and is used at the position of maximum
transmission_ it has an optical density increasing counterclockwise,
opposite to that of the other wedge. This provides a large area of uni-
form transmission for any position of the mow_blewedge. An interference
filter and an air-cooled Plexiglas windoware necessary to avoid exces-
sive wedgetemperature. Bandwidth of the interference filter is 3 per-
cent of the wavelength.

The intensity N}_ at the gas location a:id the corresponding tem-
perature for the spectral wavelength used are determined by a calibration.
Under blackbody conditions, the intensity of a radiating source is given
by Planck' s equation:

N_,b = Cl_-S(eC2/}_Tb- _I-I (BI)

where Tb is the temperature of the blackbodlr. For nonblackbody con-
ditions, including an emissivity _ and an _ptical transmission factor
Th between the radiating source and the poin. of observation, the ob-
served monochromatic area] intensity is

le )-iN_,a = _hchN},,b= CIx-S C2/_Ta - ] (Bz)

where T a is an apparent temperature corresp_)nding to the observed

radiation intensity. Equations (B]) and (B2) are the basic equations of
calibration.

In the optical path of figure S radiatioi_ from the arc is trans-

mitted by three groups of elements: TI, T2, _nd _3; <I includes all

optical elements except T2, the interference filter; and _3 is the

nozzle or test-section window optics. Using :.he Wien approximation to

Planck's equation_ N_ at the gas location is

-C2/_Tb Cl_-5e -C2/_Ta (B3)N_,a = CI_T_IT_ZT_Z_-Se =

b_
!

H
tO
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where Tb is the thermal temperature of the arc and Ta is the apparent

temperature of the arc observed at the gas location. An optical pyrom-

eter sighted on the arc crater indicates a temperature Tc at the pyrom-

eter wavelength % and arc emissivity Cp. The in_ensi_y is

e-Cg%% Se-C2/% c%,0 -- -- cl p (B4)

Letting c_ = Cp (the arc is assumed to be a gray-body radiator), equa-

tions (B3) and (B_) combine to yield

1 1 (Xp - x)
Ta - Tb + C2 in Cp - C-_ in T_, IT_,2T_, 5 (BS)

This is the calibration equation. Wavelength X is of the spectral

line; Xp is of the pyrometer, 0.65 micron. The emissivity of the arc

is taken as 0.98 from reference 2_. The transmission factors _X,I and

TX, 3 vary gradually with wavelength. They are measured photoelectrically

in the vicinity of the spectral line by using only the light transmitted

by the interference filter. The transmission factor T_, 2 of the inter-

ference filter is measured with a spectrometer using a bandwidth of

0.0020 micron or less at the wavelength of the spectral line. A further

correction in the case of the double-pass system for the transmission of

the optics and reflector on the reflector side of the light path is made

as in appendixes B and C of reference 18. The loop transmission factor

resulting from reflection of light from the tungsten lamp filament would,

however, be different in the case of the arc unit. A reflection factor

of 0.12 is produced by the glass surfaces of the optical wedge, although

the arc itself does not reflect. Consequently, a special value of TI

used in the loop transmission term includes only the optics between the

wedge and the gas. The correction for the loop transmission was found

to be negligible for these measurements and was subsequently omitted.
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APPENDIXC

BOUNDARY-LAYERCORRECI'IONS

Momentumlosses due to heat transfer to the cooled nozzle walls
have been calculated by using the method of _eference 23, which was
modified to include the effect of specific h_at ratios other than i. 4.
The method involves the momentumintegral and moment-of-momentumequa-
tions as simplified by using Stewartson's trsnsformation. It assumes
uniform and reversible free-stream properties with irreversible flow in
the boundary layer.

The quantity generally accepted as the _est correction to apply to
a flow is the boundary-layer displacement thickness 8". It cannot be
determined directly but maybe calculated by using the relation

8*
=y (Cl)

where 8

factor.

tum and moment-of-momentum integral equations_ respectively.

from reference 23, the equations are:

is the boundary-layer momentum thickness and H is the form

These two quantities are determined with the transformed momen-

Modified

yl. 215i)
MeB+O. 2155e%r2155= )

ao O. 2155

t_J

!

tO

e ( f. 2155 r2155M 02155ao yl. 2155] x= 0

+ 0.01175

_x /T e _0. 732

I o\D

yi.2155

dx (c2)
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and

dH i

dx

where

i dMeIHi(Hi + l)2(Hi - i)I _ hlh--_ I)_ _ + _

_i+ 1 _ _ - \h,fp + - o.o3 - __
A

0tr
(c3)

A 0.123 -1"561 Hi {Mea°Str_-0" 268{ Te._0"732{Te_ D

_- e 7o j k We )kToj (c_)

B = 4.2 + 1.58 - (c5)

and

D = 4.2o6(,o.936_ - i) (c6)
_" - i

The quantities at the reference conditions are determined with the

equation

(_ 1) i/3
href

= 0.5 + + O. II(T - i) (Pr)ref Me2 (C7)he

The enthalpies were computed with the data of reference 21. The calcula-

tions were made with the assumption that the equilibrium composition at

the combustor exit was frozen throughout the nozzle. Calculations for

equilibrium composition throughout the nozzle were not made, because it

was believed that the differences between a frozen boundary layer with a

frozen free stream and one with an equilibrium free stream would be very

small since N2 makes the largest contribution to the specific heat of
the mixture.

Physically, transformed quantities (subscript "tr") refer to a non-

insulated boundary layer at a Mach number of zero and include the vari-

ation of density with temperature. For boundary layers over insulated

surfaces, and where Prandtl number equals i_ the transformed and incom-
pressible (subscript "i") quantities are identical.
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The compressible momentumthickness is _)btained using the relation

y+l _+i

8 = Otr( I + ]_ -12 Me2)_ = _tr(_e°)_ (c8)

The relation between the compressible and incompressible form factors is

as follows

: + l) + - 1 - 1 (c9)

A program was set up on the IBM 704 computer to solve equations

(CI) to (C9). The output from this program yielded the boundary-layer

displacement thickness 5" as a function of x. The solution of equa-

tion (C3) required the value of H i at x = O. This starting value of

Hi was determined by first evaluating the c)mpressible form factor H

at Math 0 using the tabulated integrals of r_ference 25. The incom-

pressible form factor H i at Mach 0 was the_ determined from equation

(C9). Since the evaluation of Hi in this :harmer included the effects

of Prandtl number and heat transfer_ it was believed to be a better

approximation than the use of the flat-plate value of i.S. The values

of H i were of the order of i. 2 for both the heated air and combustion
cases.

The values of the transformed momentum _hickness at x = 0 were

calculated by the flat-plate analysis of refgrence 25.

Referring to figure 6, note that a negative displacement thickness

exists over the throat region for the heated air and combustion cases.

Negative displacement thicknesses are to be 9xpected where the thermal

boundary layer is much thicker than the velocity layer_ because higher

densities in the boundary layer relative to those in the free stream re-

sult in higher boundary-layer values of mass flow per unit area. Phys-

ically, this fact means that the flow area is greater in this region

than the calibrated area.

t_
!
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TABLE I. - COMBUSTION-GAS SAMPLES

[Po, 3.6 atm.]

X9

>0

I

eq
S

eq

S

eq

S

eq

S

eq
S

eq
S

eq
S

eq

S

Combus -

tion

t emper-

ature,

T,
oR

5076

5197

4694

5237

5236

5168

5188

5129

5144

Equiv-

alence

ratio,

c_

1.16

1•09

1.075

1.14

.577

• 666

1.16

•870

1.02

•966

.915

1•01

• 945

1.01

.875

.985

Radial

probe

posi-

tion,

in.

i

2

XN 2

O. 605

• 618

Gas-composition mole fraction, X i

XO 2 XH 2 XH20 XOHeq

0.064 0.294 0.0158

.614

•611

•691

.674

.599

•660

•616

•636

.637

• 627

•632

• 626

•644

.651

.891

• 920

• 641

• 641

0.0034

.0021 .044

.0076 .052

.0038 .054

.0684 .0040

.0586 .0004

• 0050 •0697

• 0269 .0009

• 0096 .0491

• 0164 .0226

.0182 .030

.0110 .030

.0167 .034

.0157 .034

.0220 .0246i

•0124 .027_

.0204 .0267

.021 .0172

i

•326

.280 .0224

.318

.200 .0158

.243

.280 .0211

.307

.274 .0245

.308

.263 .0259

.312

.266 .0257

.306

.259 .0255

.311

.261 .0257

.301

*Temperatures and composition calculated for equilibrium combustion

at overall equivalence ratio.
*_

Compositzon and equivalence ratio calculated from sample•
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Figure 4. Nozzle and instrumentation locations.
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Figure 6. - Boundary-layer displacement thickness.
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